Cell division is required for de novo methylation of CpG islands in bladder cancer cells.

نویسندگان

  • Mihaela Velicescu
  • Daniel J Weisenberger
  • Felicidad A Gonzales
  • Yvonne C Tsai
  • Carvell T Nguyen
  • Peter A Jones
چکیده

Cell division is essential for tumor development and progression. Methylation-mediated silencing caused by aberrant de novo methylation of CpG islands located in the promoter regions of growth regulatory genes occurs frequently in human cancers. We investigated the relationship between cell division and de novo methylation to determine whether de novo methylation can occur in the absence of cell division in cancer cells. We treated T24 bladder carcinoma cells with 5-Aza-2'-deoxycytidine to induce a transient demethylation and then compared the timing and kinetics of remethylation of the p16 gene locus under conditions of either G(0)-G(1) growth arrest induced by serum starvation and confluence or continuous cell proliferation in complete medium. Variable levels of remethylation were detected in CpG poor regions of DNA, as well as repetitive DNA elements in the absence of cell division, yet no remethylation occurred at CpG islands under these conditions. This correlated with continuous expression of p16 protein in these cells. DNA methyltransferase (DNMT)1 and DNMT3b3 proteins were undetectable in 5-Aza-2'-deoxycytidine-treated and untreated nondividing cells, and their mRNA transcripts were down-regulated in these cells. Although DNMT3a mRNA levels were also reduced, they recovered to original levels in nondividing cells after drug treatment. Our results suggest that cell division is required for de novo methylation of CpG islands and that DNMT3a may play a role in methylating CpG poor regions or repetitive DNA elements outside of the S phase of the cell cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of promoter CpG island hypermethylation of cyclindependent kinase inhibitor gene p21waf1/cip1 on some breast carcinoma cell lines

The p21 belongs to the CIP/KIP family of CDK inhibitors involved in cell cycle arrest at specific stages of the cell cycle progression. DNA methylation is the best studied epigenetic mark that have been evidently associated to chromatin condensation, and repression of gene transcription. The CpG island hypermethylation in promoter region of certain genes occurs in cancer cells and affects tumor...

متن کامل

Progressive increases in de novo methylation of CpG islands in bladder cancer.

We conducted a quantitative analysis of the extent of de novo methylation of four CpG islands in human urinary transitional cell carcinomas of different stages and grades to determine how frequently these CpG islands became methylated in transition cell carcinomas during progression. The CpG islands included exon 5 of PAX6, exon 2 of p16, the 5' end of the deleted in bladder cancer gene, and th...

متن کامل

General transcription factor binding at CpG islands in normal cells correlates with resistance to de novo DNA methylation in cancer cells.

Aberrant DNA methylation at CpG islands is thought to contribute to cancer initiation and progression, but mechanisms that establish and maintain DNA methylation status during tumorigenesis or normal development remain poorly understood. In this study, we used methyl-CpG immunoprecipitation to generate comparative DNA methylation profiles of healthy and malignant cells (acute leukemia and color...

متن کامل

Two Steps Methylation Specific PCR for Assessment of APC Promoter Methylation in Gastric Adenocarcinoma

Gastric Cancer (GC) is the second most common cancer in the world and a leading cause of cancer-related mortality. Methylation of promoter CpG islands (CGIs) belonging to tumor suppressor genes causes transcriptional silencing of their corresponding genes leading to carcinogenesis and other disorders. Adenomatous Polyposis Coli (APC) a tumor suppressor gene is inactivated by methylation of prom...

متن کامل

De novo CpG island methylation in human cancer cells.

A major obstacle toward understanding how patterns of abnormal mammalian cytosine DNA methylation are established is the difficulty in quantitating the de novo methylation activities of DNA methyltransferases (DNMT) thought to catalyze these reactions. Here, we describe a novel method, using native human CpG island substrates from genes that frequently become hypermethylated in cancer, which ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 62 8  شماره 

صفحات  -

تاریخ انتشار 2002